\begin{equation} \label{eq:loss} \ell (y,\hat{y}) = \frac{\sum_{i=1}^m{\mathcal{1}\!\left[y_i \ne \hat{y_i}\right]}}{m} \end{equation}
// ===================== MULTI CLASS ===================== // Logger.info("================= Multi-class version ================="); Logger.info("Loading data..."); // === LOADING DATA === // InstancesContainer ocrAllInstancesMulti = reader.readDataMultiClass(dataPath, Consts.TAB, Consts.COLON_SPLITTER); InstancesContainer ocrTrainInstancesMulti = getFold(ocrAllInstancesMulti, 1, true); InstancesContainer ocrTestInstancesMulti = getFold(ocrAllInstancesMulti, 1, false); if (ocrTrainInstancesMulti.getSize() == 0) return; // ==================== // W = new Vector() {{put(0, 0.0);}}; // init the first weight vector arguments = new ArrayList() {{add(500.0);}}; // model parameters // ======= PA MULTI-CLASS MODEL ====== // // create the model StructEDModel ocr_model_multi_class = new StructEDModel(W, new PassiveAggressive(), new TaskLossMultiClass(), new InferenceMultiClass(Char2Idx.char2id.size()-1), null, new FeatureFunctionsSparse(Char2Idx.char2id.size()-1, maxFeatures), arguments); ocr_model_multi_class.train(ocrTrainInstancesMulti, null, null, epochNum, isAvg, true); // train ocr_model_multi_class.predict(ocrTestInstancesMulti, null, 1, false); // predict // ======================================================= // // ====================== STRUCTURED ===================== // Logger.info("================= Structured version ================="); // === LOADING DATA === // InstancesContainer ocrAllInstances = reader.readData(dataPath, Consts.TAB, Consts.COLON_SPLITTER); InstancesContainer ocrTrainInstancesStruct = getFold(ocrAllInstances, 1, true); InstancesContainer ocrTestInstancesStruct = getFold(ocrAllInstances, 1, false); if (ocrTrainInstancesStruct.getSize() == 0) return; // ==================== // // ======= PA STRUCTURED MODEL ====== // W = new Vector() {{put(0, 0.0);}}; // init the first weight vector arguments = new ArrayList () {{add(15.0);}}; // model parameters StructEDModel ocr_model = new StructEDModel(W, new PassiveAggressive(), new TaskLossOCR(), new InferenceOCR(), null, new FeatureFunctionsOCR(maxFeatures), arguments); // create the model ocr_model.train(ocrTrainInstancesStruct, null, null, epochNum, isAvg, true); // train ocr_model.predict(ocrTestInstancesStruct, null, 1, false); // predict Graph g = new Graph(); g.drawHeatMap(ocr_model, start_transition_characters, nam_of_characters); // ======================================================= //